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Five-membered ring lactones have been synthesized using a straightforward three-component reaction
among in situ-generated arylzinc reagents, dimethyl itaconate and aromatic aldehydes. This Barbier-like
procedure, which is characterized by its simplicity, allows the concise synthesis of a range of highly func-
tionalized 4,5-substituted c-butyrolactones.

� 2009 Elsevier Ltd. All rights reserved.
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Substituted c-butyrolactones, in particular those bearing a car-
boxyl group at the b position (paraconic acids) constitute an
important family of biologically active compounds displaying anti-
tumour and antibiotic activities.1 They also represent important
building blocks in the preparation of natural products of pharma-
ceutical interest.2 Accordingly, during the last years, numerous
procedures have been developed for the synthesis of paraconic
acids and derivatives.3

Surprisingly, although multicomponent reactions provide a ra-
pid access to highly functionalized scaffolds4 such processes have
not been employed so far for the synthesis of functionalized 4,5-
substituted c-butyrolactones.5

Recently, our group has developed a Mannich-type three-compo-
nent reaction among organozinc reagents, amines and aldehyde
derivatives.6 As a prospect, we envisaged to extend this methodol-
ogy to an array of multicomponent reactions involving in situ-gener-
ated arylzinc reagents as nucleophiles. Thus, as a first disclosure, we
describe herein a cascade conjugate addition-aldolization-cycliza-
tion process as a useful tool for the synthesis of c-butyrolactones.

The putative synthesis of c-butyrolactones was based on the
observation that the addition of arylzinc compounds to aldehyde
1 is generally slow. Thus, we conceived that a 1,4 addition of these
organometallic reagents, generated in situ from aryl bromides 2,
on a suitable Michael acceptor like dimethyl itaconate might be
the faster pathway. The resulting enolate might then react with
ll rights reserved.

: +33 0 149781148.
aldehyde 17 to induce the formation of an alcoholate which would
further cyclize to provide the expected c-butyrolactone 3 (Scheme
1).

In a preliminary experiment, we tried to undergo a three-com-
ponent cascade reaction between benzaldehyde 1a, dimethyl itac-
onate and 4-bromoanisole 2a. We chose to employ experimental
conditions similar to those described in a previous work regarding
the in situ activation of aryl bromides into the corresponding aryl-
zinc compounds8 and their three-component reaction with alde-
hydes and amines.6e Thus, 2a was allowed to react with dimethyl
itaconate and benzaldehyde 1a in the presence of zinc dust and co-
balt bromide at room temperature (Scheme 2).
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Scheme 1. Principle of the three-component cascade reaction.
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Scheme 2. Preliminary experiment involving 4-bromoanisole, benzaldehyde and
dimethyl itaconate.
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a All experiments were conducted with 20 mL of acetonitrile, 2.7 g (15 mmol) of
bromoanisole, 10 mmol of the aldehyde, 7.9 g (50 mmol) of dimethyl itaconate, 3 g
(46 mmol) of zinc dust and 0.44 g (2 mmol) of CoBr2. Reactions were carried out for
0.75–2 h.

b Isolated yield.
c No reaction.
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Under these conditions, we were satisfied to observe the forma-
tion of the expected lactone in good yield, as a one-to-one ratio of
diastereoisomers.

We then started to investigate the scope of this reaction system.
In a first series of experiments, dimethyl itaconate and 4-bromo-
anisole 2a, taken as the model halide, were allowed to react with
a range of aromatic aldehydes 1 for 0.75–2 h.9 Results are reported
in Table 1.

Yields obtained with benzaldehyde derivatives generally range
from moderate to excellent and it can be noted that the reaction
tolerates an important variety of functionalized aromatic alde-
hydes bearing electron-withdrawing as well as electron-donating
groups. Starting from heteroaromatic aldehydes, the corresponding
lactones are obtained in satisfactory to good yields except starting
from 3-pyridine carboxaldehyde (Table 1, entry 7). In that case, no
coupling is observed, even after 24 h at 60 �C.

In a second set of experiments, we turned our attention to the
variation of the aromatic bromide. Results are reported in Table 2.

Very satisfactory yields are generally obtained with both elec-
tron-rich and electron-deficient aryl bromides. Moreover, we were
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Scope of aromatic bromidesa
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a All experiments were conducted with 20 mL of acetonitrile, 15 mmol of the aryl
bromide, 1.1 g (10 mmol) of benzaldehyde, 7.9 g (50 mmol) of dimethyl itaconate,
3 g (46 mmol) of zinc dust and 0.44 g (2 mmol) of CoBr2. Reactions were carried out
for 1–3 h.

b Isolated yield.
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satisfied to observe that hindered bromides can undergo the cou-
pling, even if in this case a slight decrease of the reaction yield (Ta-
ble 2, entries 3 and 5) is noticed.

In summary, we have developed a simple and efficient method
for the synthesis of 4,5-substituted c-butyrolactones via a multi-
component one-pot reaction between dimethyl itaconate, aryl bro-
mides and carbonyl compounds. This cascade procedure, which
involves in the same experimental step the formation of an organo-
zinc reagent, a Michael addition, an aldol coupling and a final cycli-
zation provides a reliable access to a wide variety of lactones,
making this strategy suitable for parallel synthesis. Further devel-
opments of this promising reaction system are currently in
progress.
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